變壓器差動保護是按照循環(huán)電流原理構(gòu)成的。雙繞組變壓器,在其兩側(cè)裝設(shè)電流互感器。當(dāng)兩側(cè)電流互感器的同極性在同一方向,則將兩側(cè)電流互感器不同極性的二次端子相連接(如果同極性端子均置于靠近母線一側(cè),二次側(cè)為同極相連),差動繼電器的工作線圈并聯(lián)在電流互感器的二次端子上。在正常運行或外部故障時,兩側(cè)的二次電流大小相等,方向相反,在繼電器中電流等于零,因此差動保護不動作。然而,由于變壓器實際運行中引起的種種不平衡電流,使得差動繼電器的動作電流增大,從而降低了保護的靈敏度。
2產(chǎn)生的原因
不平衡電流的產(chǎn)生有穩(wěn)態(tài)和暫態(tài)二方面。穩(wěn)態(tài)不平衡電流產(chǎn)生的原因:(1)變壓器高低壓側(cè)繞組接線方式不同;(2)變壓器各側(cè)電流互感器的型號和變比不相同;(3)帶負荷調(diào)分接頭引起變壓器變比的改變。暫態(tài)不平衡電流主要是由于變壓器空載投入電源或外部故障切除,電壓恢復(fù)時產(chǎn)生的勵磁涌流。
3影響和防范措施
下面就以上幾種變壓器差動保護的不平衡電流產(chǎn)生原因和防范措施進行闡述。
3.1變壓器高低壓側(cè)繞組接線方式不同的影響和防范措施:
3.1.1變壓器接線組別對差動保護的影響
對于Y,y0接線的變壓器,由于一、二次繞組對應(yīng)相的電壓同相位,故一、二次兩側(cè)對應(yīng)相的相位幾乎完全相同。而常用的Y,d11接線的變壓器,由于三角形側(cè)的線電壓,在相位上相差30°,故其相應(yīng)相的電流相位關(guān)系也相差30°,即三角形側(cè)電流比星形側(cè)的同一相電流,在相位上超前30°,因此即使變壓器兩側(cè)電流互感器二次電流的數(shù)值相等,在差動保護回路中也會出現(xiàn)不平衡電流。
3.1.2變壓器接線組別影響的防范措施
為了消除由于變壓器Y,d11接線而引起的不平衡電流的影響,可采用相位補償法,即將變壓器星形側(cè)的電流互感器二次側(cè)接成三角形,而將變壓器三角形側(cè)的電流互感器二次側(cè)接成星形,從而把電流互感器二次電流的相位校正過來。相位補償后,為了使每相兩差動臂的電流數(shù)值近似相等,在選擇電流互感器的變比nTA時,應(yīng)考慮電流互感器的接線系數(shù)KC后,即差動臂的電流為KCI1/nTA。其中,I1為一次電流,電流互感器按星形接線時則KC=1,按三角形接線時KC=√3,如電流互感器的二次電流為5A時,則兩側(cè)電流互感器的變比按以下兩式選擇。
變壓器星形側(cè)的電流互感器變比為:
nTA(Y)=√3In(Y)/5
變壓器三角形側(cè)的電流互感器變比為:
nTA(△)=In(△)/5
式中In(Y)變壓器繞組接成星形側(cè)的額定電流;
In(△)變壓器繞組接成三角形側(cè)的額定電流。
實際上選擇電流互感器時,是根據(jù)電流互感器定型產(chǎn)品變比確定一個接近并稍大于計算值的標(biāo)準(zhǔn)變比(下表所列為我廠一臺15MVA38.5kV/6.3kV主變的計算)。
3.2變壓器各側(cè)電流互感器型號和變比的影響和防范措施
變壓器兩側(cè)額定電壓不同,裝設(shè)在兩側(cè)的電流互感器型號就不相同,致使他們的飽和特性和勵磁電流(歸算到同一側(cè))也不相同。因而在外部短路時將引起較大的不平衡電流,對此只有采用適當(dāng)增大保護動作電流的辦法予以考慮。由于電流互感器都是標(biāo)準(zhǔn)化的定型產(chǎn)品,所以實際選用的變比,一般均與計算變比不完全一致,而且各變壓器的變比也不可能完全相同,因此在差動保護回路又會引起不平衡電流。這種由于變比選擇不完全合適而引起的不平衡電流,可利用磁平衡原理在差動繼電器中設(shè)置平衡線圈加以消除,一般平衡線圈接于保護臂電流小的一側(cè),因為平衡線圈和差動線圈共同繞在繼電器的中間磁柱上,適當(dāng)選擇平衡線圈的匝數(shù),使它產(chǎn)生的磁勢與差流在差動線圈中產(chǎn)生的磁勢相抵消,這樣,在二次繞阻就不會感應(yīng)電勢了,其差動繼電器的執(zhí)行元件也就無電流。但接線時要注意極性,應(yīng)使小電流側(cè)在平衡線圈與差流在差動線圈產(chǎn)生的磁勢相反。
3.3帶負荷調(diào)壓在運行中改變分接頭的影響和防范措施
電力系統(tǒng)中,通常利用調(diào)節(jié)變壓器分接頭的方法來維持一定的電壓水平(由于分接頭的改變,使變壓器的變比也跟著改變)。但差動保護中電流互感器變比的選擇,差動繼電器平衡線圈的確定,都只能根據(jù)一定的變壓器變比計算和調(diào)整,使差動回路達到平衡。當(dāng)變壓器分接頭改變時,就破壞了平衡,并出現(xiàn)了新的不平衡電流,這一不平衡電流與一次電流成正比,其數(shù)值為
Ibp=±△UID.max/nTA
式中±△U――調(diào)壓分接頭相對于額定抽頭位置的最大變化范圍
ID.max――通過調(diào)壓側(cè)的最大外部故障電流。
為了避免不平衡電流的影響,在整定保護的動作電流時應(yīng)給予相應(yīng)的考慮,即提高保護的動作整定值。
3.4變壓器勵磁涌流的影響和防范措施
3.4.1變壓器的勵磁涌流對差動保護的影響
變壓器的高、低壓側(cè)是通過電磁聯(lián)系的,故僅在電源的一側(cè)存在勵磁電流,它通過電流互感器構(gòu)成差回路中不平衡電流的一部分。在正常運行情況下,其值很小,一般不超過變壓器額定電流的3%~5%。當(dāng)外部短路故障時,由于電源側(cè)母線電壓降低,勵磁電流更小,因此這些情況下的不平衡電流對差動保護的影響一般可以不必考慮。在變壓器空載投入電源或外部故障切除后電壓恢復(fù)過程中,由于變壓器鐵芯中的磁通急劇增大,使鐵芯瞬間飽和,這時出現(xiàn)數(shù)值很大的沖擊勵磁電流(可達5~10倍的額定電流),通常稱為勵磁涌流。勵磁涌流的波形如下圖:
由圖可知,勵磁涌流IE中含有大量的非周期分量與高次諧波,因此勵磁涌流已不是正弦波,而是尖頂波,且在最初瞬間完全偏于時間軸的一側(cè)。勵磁涌流的大小和衰減速度,與合閘瞬間外加電壓的相位,鐵芯中剩磁的大小和方向、電源容量、變壓器的容量及鐵芯材料等因素有關(guān)。對于單相的雙繞阻變壓器,在其它條件相同的情況下,當(dāng)電壓瞬時值為零時合閘,勵磁電流最大;如果在電壓瞬時值最大時合閘,則不會出現(xiàn)勵磁涌流,而只有正常的勵磁電流。對于三相變壓器,無論任何瞬間合閘,至少有兩相會出現(xiàn)不同程度的勵磁涌流。在起始瞬間,勵磁涌流衰減的速度很快,對于一般的中小型變壓器,經(jīng)0.5~1S后其值不超過額定流的0.25~0.5倍;大型電力變壓器勵磁涌流的衰減速度較慢,衰減到上述值時約2~3S。這就是說,變壓器容量越大衰減越慢,完全衰減要經(jīng)過幾十秒的時間。根據(jù)試驗和理論分析結(jié)果得知,勵磁涌流中含有大量的高次諧波分量,其中二次諧波分量所占比例最大,約為60%以上。四次以上諧波分量很小,在最初幾個周期內(nèi),勵磁涌流的波形是間斷的(即兩個波形之間有一間斷角),每個周期內(nèi)有120。~180。的間斷角,最小也不低于80!100。[見左下圖(b)]。另外,勵磁涌流對于額定電流幅值的倍數(shù),與變壓器容量有關(guān),容量越大,變壓器的涌流倍數(shù)也越小。
3.4.2變壓器差動保護中減小勵磁涌流影響的措施
防止勵磁涌流的影響,采用BCH型具有速飽和變流器的繼電器是國內(nèi)目前廣泛采用的一種方法。當(dāng)外部故障時,所含非周期分量的最大不平衡電流能使速飽和變流器的鐵芯很快地單方面飽和,傳變性能變壞,致使不平衡電流難于傳變到差動繼電器的差動線圈上,保證差動保護不會誤動。內(nèi)部故障時雖然速飽和變流器一次線圈的電流也含有一定的非周期性分量,但它衰減得快,一般經(jīng)過1.5~2個周波即衰減完畢,此后速飽和變流器一次線圈中通過的完全是周期性的短路電流,于是在二次線圈中產(chǎn)生很大的感應(yīng)電動勢,并使執(zhí)行元件中的相應(yīng)電流也較大,從而使繼電器能靈敏地動作。速飽和變流器正是利用容易飽和的性能來躲過變壓器外部短路不平衡電流和空載合閘勵磁涌流的非周期分量影響。
此外,減小勵磁涌流還可以采用以下措施:
3.4.3采用內(nèi)部短路電流和勵磁涌流波形的差別(有無間斷角)來躲過勵磁涌流。
即間斷角鑒別法,這種方法是將差電流進行微分,再將微分后的電流進行全波整流,利用整流后的波形在動作整定值下存在時間長短來判斷是內(nèi)部故障,還是勵磁涌流。
3.4.4利用二次諧波制動。
保護裝置在變壓器空載投入和外部故障切除電壓恢復(fù)時,利用二次諧波分量進行制動;內(nèi)部故障時,利用基波做;外部故障時,利用比例制動回路躲過不平衡電流。
4結(jié)語
綜上所述,為了保證差動保護動作的選擇性,差動繼電器的動作電流必須避越最大不平衡電流。不平衡電流越小,保護裝置的靈敏度越高,從而保證變壓器的安全穩(wěn)定運行。