(一)重點(diǎn)、難點(diǎn)分析
重點(diǎn):找出命題的題設(shè)和結(jié)論.因?yàn)檎页鲆粋(gè)命題的題設(shè)和結(jié)論,是對(duì)該命題深刻理解的前提,而對(duì)命題理解能力是我們今后研究數(shù)學(xué)必備的能力,也是研究其它學(xué)科能力的基礎(chǔ).
難點(diǎn):找出一個(gè)命題的題設(shè)和結(jié)論.因?yàn)槔斫夂驼莆找粋(gè)命題,一定要分清它的題設(shè)和結(jié)論,所以找出一個(gè)命題的題設(shè)和結(jié)論是十分重要的問題.但有些命題的題設(shè)和結(jié)論不明顯.例如,“對(duì)頂角相等”,“等角的余角相等”等.一些沒有寫成“如果……那么……”形式的命題,學(xué)生往往搞不清哪是題設(shè),哪是結(jié)論,又沒有一個(gè)通用的方法可以套用,所以分清題設(shè)和結(jié)論是教學(xué)的一個(gè)難點(diǎn).
(二) 教學(xué)建議
1、教師在教學(xué)過程中,組織或引導(dǎo)學(xué)生從具體到抽象,結(jié)合學(xué)生熟悉的事例,來理解命題的概念、找出一個(gè)命題的題設(shè)和結(jié)論,并能判斷一些簡(jiǎn)單命題的真假.
2、命題是數(shù)學(xué)中一個(gè)非常重要的概念,雖然高中階段我們還要學(xué)習(xí),但對(duì)于程度好的A層學(xué)生還要理解:
(1)假命題可分為兩類情況:
①題設(shè)只有一種情形,并且結(jié)論是錯(cuò)誤的,例如,“1+3=7”就是一個(gè)錯(cuò)誤的命題.
②題設(shè)有多種情形,其中至少有一種情形的結(jié)論是錯(cuò)誤的.例如,“內(nèi)錯(cuò)角互補(bǔ),兩直線平行”這個(gè)命題的題設(shè)可分為兩種情形:第一種情形是兩個(gè)內(nèi)錯(cuò)角都等于90°,這時(shí)兩直線平行;第二種情形是兩個(gè)內(nèi)錯(cuò)角不都等于90°,這時(shí)兩直線不平行.整體說來,這是錯(cuò)誤的命題.
(2)是否是命題:
命題的定義包括兩層涵義:①命題必須是一個(gè)完整的句子;②這個(gè)句子必須對(duì)某件事情做出肯定或者否定的判斷.即命題是判斷某一件事情的句子.在語法上,這樣的句子叫做陳述句,它由“題設(shè)+結(jié)論”構(gòu)成.
另外也有一些句子不是陳述句,例如,祈使句(也叫做命令句)“過直線AB外一點(diǎn)作該直線的平行線.”疑問句“∠A是否等于∠B?”感嘆句“竟然得到5>9的結(jié)果!”以上三個(gè)句子都不是命題.
(3)命題的組成
每個(gè)命題都是由題設(shè)、結(jié)論兩部分組成.題設(shè)是已知事項(xiàng);結(jié)論是由已知事項(xiàng)推出的事項(xiàng).命題常寫成“如果…,那么…”的形式.具有這種形式的命題中,用“如果”開始的部分是題設(shè),用“那么”開始的部分是結(jié)論.
有些命題,沒有寫成“如果…,那么…”的形式,題設(shè)和結(jié)論不明顯.對(duì)于這樣的命題,要經(jīng)過分折才能找出題設(shè)和結(jié)論,也可以將它們改寫成“如果…那么…”的形式.
另外命題的題設(shè)(條件)部分,有時(shí)也可用“已知……”或者“若……”等形式表述;命題的結(jié)論部分,有時(shí)也可用“求證……”或“則……”等形式表述.
教學(xué)目標(biāo)
1.使學(xué)生對(duì)命題、真命題、假命題等概念有所理解.
2.使學(xué)生理解幾何命題的組成,能夠區(qū)分命題的題設(shè)和結(jié)論兩部分,并能將命題改寫成“如果……,那么……”的形式.
3.會(huì)判斷一些命題的真假.
教學(xué)重點(diǎn)和難點(diǎn)
本節(jié)的重點(diǎn)和難點(diǎn)是:找出一個(gè)命題的題設(shè)和結(jié)論.
教學(xué)過程設(shè)計(jì)
一、分析語句,理解命題
1.教師讓學(xué)生隨意說一句完整的話,每個(gè)小組可以派一名同學(xué)說,如:
(1)我是中國人.
(2)我家住在北京.
(3)你吃飯了嗎?
(4)兩條直線平行,內(nèi)錯(cuò)角相等.
(5)畫一個(gè)45°的角.
(6)平角與周角一定不相等.
2.找出哪些是判斷某一件事情的句子?
學(xué)生答:(1),(2),(4),(6).
3.教師給出命題的概念,并舉例.
命題:判斷一件事情的句子,叫做命題,分析(3),(5)為什么不是命題.
教師分析以上命題中,每句話都判斷什么事情.所謂判斷,就是肯定一個(gè)事物是什么或不是什么,不能含混不清.在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,請(qǐng)學(xué)生舉幾個(gè)數(shù)學(xué)命題的例子,每組再選一個(gè)同學(xué)說.(不要讓說過的再說)
如:
(1)對(duì)頂角相等.
(2)等角的余角相等.
(3)一條射線把一個(gè)角分成兩個(gè)相等的角,這條射線一定是這個(gè)角的平分線.
(4)如果 a>0,b>0,那么a+b>0.
(5)當(dāng)a>0時(shí),|a|=a.
(6)小于直角的角一定是銳角.
在學(xué)生舉例的基礎(chǔ)上,教師有意說出以下兩個(gè)例子,并問這是不是命題.
(7)a>0,b>0,a+b=0.
(8)2與3的和是4.
有些學(xué)生可能給與否定,這時(shí)教師再與學(xué)生共同回憶命題的定義,加以肯定,先不要給出假命題的概念,而是從“判斷”的角度來加深對(duì)命題這一概念的理解.
4.分析命題的構(gòu)成,改寫命題的形式.
例 兩條直線平行,同位角相等.
(l)分析此命題的構(gòu)成,前一部分是后一部分成立的條件,后一部分是在前一部分條件下所得的結(jié)論.已知事項(xiàng)為“題設(shè)”,由已知推出的事項(xiàng)為“結(jié)論”.
(2)改寫命題的形式.
由于題設(shè)是條件,可以寫成“如果……”的形式,結(jié)論寫成“那么……”的形式,所以上述命題可以改寫成“如果兩條平行線被第三條直線所截,那么同位角相等.”